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vertebrates is considered in a general mathematical framework. A synaptic

evolution Gcheme of a new kind is proposed in which incoming patterns rather

than converging afferents compete. The change in -#he'efficacy of a given

synapse depends not only on instantaneous pre and postsynaptic activities

but also on a slowly varying time-averaged value of the postsynaptic activity.

Assuming an appropriate nonlinear form for this dependence, development of

selectivity is obtained under quite general conditions on the sensory

environment. One does not require nonlinearity of the neuron's integrative

power nor does one need to assume any particular form for intracortical

circuitry. This is &f±*s-Cillustrated in simple cases, e.g. when the

environment consists of only two different stimuli presented alternately

in a random manner. The following formal statement then holds: the state

of the system converges with probability 1 to points of maximum selectivity

in the state space. We next consider the problem of early development

of orientation selectivity and binocular interaction in primary visual

cortex. Giving the environment an appropriate form, we obtain orientation

tuning curves and ocular dominance comparable to what is observed in

normally reared adult cats or monkeys. Simulations with binocular

input and various t pes of normal or altered environments show good

agreement with (kerelevant experimental data. Experi ents are suggested

that could further test our theory.
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ABSTRACT

The development of stimulus selectivity in primary sensory cortex of

higher vertebrates is considered in a general mathematical framework. A

synaptic evolution scheme of a new kind is proposed in which incoming

patterns rather than converging afferents compete. The change in the

efficacy of a given synapse depends not only on instantaneous pre and

postsynaptic activities but also on a slowly varying time-averaged value of

the postsynaptic activity. Assuming an appropriate nonlinear form for this

dependence, development of selectivity is obtained under quite general con-

ditions on the sensory environment. One does not require nonlinearity of

the neuron's integrative power nor does one need to assume any particular

form for intracortical circuitry. This is first illustrated in simple

I cases, e.g. when the environment consists of only two different stimuli

presented alternately in a random manner. The following formal statement

then holds: the state of the system converges with probability 1 to points

of maximum selectivity in the state space. We next consider the problem

of early development of orientation selectivity and binocular interaction

in primary visual cortex. Giving the environment an appropriate form, we

obtain orientation tuning curves and ocular dominance comparable to what is

observed in normally reared adult cats or monkeys. Simulations with bi-

nocular input and various types of normal or altered environments show

good agreement with the relevant experimental data. Experiments are

suggested that could further test our theory.
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I. INTRODUCTION

It has been known for some time that sensory neurons at practically all

levels display various forms of stimulus selectivity. They may respond

preferentially to a tone of a given frequency, a light spot of a given color,

a light bar of a certain length, retinal disparity, orientation, etc...

We might, therefore, regard stimulus selectivity as a general property of

sensory neurons, and conjecture that the development of such selectivity

obeys some general rule. Most attractive is the idea that some of the

mechanisms by which selectivities develop in embryonic or early post natal

life are sufficiently general to allow a unifying theoretical treatment.

In the present paper we attempt to construct such a mathematical theory of

the development of stimulus selectivity in cortex. It is based on: 1) an

elementary definition of a general index of selectivity, 2) stochastic

differential equations proposed as a description of the evolution of the

strengths of all synaptic junctions onto a given cortical neuron.

The ontogenetic development of the visual system, particularly of

higher vertebrates, has been very extensively studied. Since the work of

Hubel and Wiesel (1959, 1962) it has been known that almost all neurons in

the primary visual cortex (area 17) of the normally reared adult cat are

selective; they respond in a precise and sometimes highly tuned fashion

to a variety of features--in particular to bars or edges of a given orientation

and/or moving in a given diree.tion through their receptive fields. Further

work has shown that the response characteristics of these cortical cells

strongly depend on the visual environment experienced by the animal during

* IWA
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a critical period extending roughly from the 3rd to the 15th week of

postnatal life. (see ior example Hubel and Wiesel, 1965; Blakemore and

Van Sluyters, 1975; Buisseret and Imbert, 1976; Fregnac and Imbert, 1978;

and Fregnac, 1979). Although these experiments show that visual experience

plays a determining role in the development of selectivity the precise

nature of this role is still a matter of controversy.

Applying our general ideas to the development of orientation selectivity

and binocular interaction in area 17 of cat visual cortex, we obtain a theory

based on a single mechanism of synaptic modification that accounts for the

great variety of experimental results on monocular and binocular experience

in normal and various altered visual environments. In addition we obtain

some new predictions.

It is known that various algorithms related to Hebb's principle of synaptic

learning (Hebb, !949) can account for the formation of associative and distri-

buted memories (see for example Marr, 1969; Brindley, 1969; Anderson, 1970

and 1972; Cooper, 1973; Kohonen, 1977). We therefore suggest that it may be

the same fuzndp.ental mechanism, accessible to detailed experimental investiga-

tion in primary sensory areas of the nervous system which is also responsible

for some of the higher forms of central nervous system organization.

In sections II-IV, our ideas are presented in general form, section V is

devoted to the development of orientation selectivity primarily in a normal

visual environment, whereas in section VI it is shown that our assumptions

also account for normal or partial development of orientation selectivity

and binocularity in various normal or altered visual environments.

e VW
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II. PRELIMINARY REMARKS AND DEFINITIONS

Notation

We simplify the description of the dynamics of a neuron by choosing as

variables not the instantaneous incoming time-sequence of spikes in each

afferent fiber, the instantaneous membrane potential of the neuron or the

time-sequence of outgoing spikes, but rather the pre and postsynaptic

firing frequencies. These may be thought of as moving time-averages of

the actual instantaneous variables, where the length of the averaging

interval is of the order of magnitude of the membrane time-constant T.

Throughout this paper, these firing frequencies are used as instantaneous

variables. This formal neuron is thus a device which performs spatial

integration (it integrates the signals impifiging all over the soma and

dendrites) rather than spatio-temporal integration: the output at time t

is a function of the input and synaptic efficacies at t, independent of

past history.

A synaptic efficacy mi characterizes the net effect of presynaptic neuron

i on the postsynaptic neuron (in most of the paper only one postsynaptic

neuron is considered). This effect may be mediated through a complex system

* including perhaps several interneurons some of which are excitatory,

other inhibitory. The resulting "ideal synapse" (Nass and Cooper, 1975)

may thus be of either sign depending on whether the net effect is excitatory

or inhibitory; it may also change sign during development.
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A further simplification is to assume that the integrative power of the

neuron is a linear function, that is:

c(t) = Ejmi(t)dj(t) (1)

where c(t) is the output at time t, m.(t) is the efficacy of the j-th synapse

at time t, d (t) is the j-th component of the input at time t (the firing

frequency of the j-th presynaptic neuron) and Z. denotes summation over J, i.e.,

over all presynaptic neurons. We can then write:

MWr~t = (M 1(t), m 2(t), .. , N(t))

d(t) = (dl(t), d 2(t), ... dN(t))

c(t) = m(t)-d(t) (2)

m(t) and d (t) are real-valued vectors, of the same dimension, N, i.e., the

number of ideal synapses onto the neuron, and c(t) is the inner product (or

"dot product") of m(t) and d(t). The vector m(t), i.e. the array of synaptic

efficacies at time t, is called the state of the neuron at time t. (Note

that c(t) as well as all components of d(t) represent firing frequencies

that are measured from the level of average spontaneous activity; thus

they might take negative as well as positive values; m (t) is dimensionless.)

The precise form of the integrative power is not essential: our results

remain unchanged if for instance c(t) = S(m(t).d(t))with S a positive-valued

sigmoid-shaped function (see Bienenstock, 1980). This is in contrast to

other work (e.g. Von der Malsburg, 1973) that does require nonlinear in-

tegrative power (see Appendix B).

Selectivity

It is common usage to estimate the orientation selectivity of a single

visual cortical neuron by measuring the half-width at half-height--or an
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equivalent quantity--of its orientation tuning curve. The selectivity

is then measured with respect to a parameter of the stimulation, namely

the orientation, which takes on values over an interval of 1800. In the

present study, various kinds of inputs are considered, e. g. formal inputs

with a parameter taking values on a finite set of points, rather than a

continuous interval. It will then be useful to have a convenient general

index of selectivity, defined in all cases. We propose the following:

Sel d1 (Amean response ofA i with respect todmaximum response of. 4 ,with respect to

With this definition, selectivity is estimated with respect to, or in an

environment for the neuron, that is, a random variable d that takes on values

in the space of inputs to the neuron Al. The variable 4 represents a random

*- input to the neuron, and is characterized by its probability distribution that

may be discrete or continuous. (During normal development, the input to the

neuron (or neuronal network) is presumably distributed uniformly over all

orientations. In abnormal rearing conditions (e.g. dark reared) the input

during development could be different from the input for measuring selectivity.

How this should be translated in the formal space RN will be discussed in

2, section V). This distribution defines an environment, mathematically a

random variable . Selectivity is estimated (before, or after development)

with respect to this same environment . Obviously, Sel (A!) always fallsI%

between 0 and 1, and the higher the selectivity of L4 in , the closer
i~Sel (JV') is to 1.

.I
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When applied to the formal neuron in state m definition (3) gives:

E[m
Sel(in) = 1 - ess sup(m • d)

where d is any RN -valued random variable (the formal environment for the

neuron). The symbol E [... stands for "expected value of ..." (i.e. mean

value with respect to the distribution of ) and "ess sup of ..." (essential

supremum) is equivalent to "maximum of ... " in most common applications. This

is illustrated in Fig. 1.

I

4
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III. MODIFICATION OF CORTICAL SYNAPSES

The various factors that influence synaptic modification may be divided

broadly into two classeS--those dependent on global and those dependent

on local information. Global information in the form of chemical or

electrical signalling presumably influences in the same way most (or all)

modifiable junctions of a given type in a given area. Evidence for the

existence of global factors that affect development may,for instance,be found

in Kasamatsuand Pettigrew (1976, 1979), Singer (1979, 1980), and Buisseret

et al. (1978). On the other hand, local information available at each

modifiable synapse can influence each junction in a different manner. In

this paper we are primarily interested in the effect of local information on

the development of selectivity.

An early proposal as to how local information could affect synaptic

modification was made by Hebb (1949). His, now classical, principle was

suggested as a possible neurophysiological basis for operant conditioning:

"when an axon of cell A is near enough to excite a cell B and repeatedly or

persistently takes part in firing it, some growth process or metabolic change

takes place in one or both cells such that A's efficiency, as one of the cells

firing B, is increased". Thus the increase of the synaptic strength

connecting A to B is dependent upon the correlated firing of A and B. Such

a correlation principle has inspired the work of many theoreticians on

various topics related to learning, associative memory, pattern recognition,

organization of neural mappings (retinotopic projections) and development

of selectivity of cortical neurons.

It is fairly clear that in order to actually use Hebb's principle one must
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state conditions for synaptic decrease as specific as those for synaptic

increase: if synapses are allowed only to increase, all synapses will

eventually saturate; no information will be stored and no selectivity will

develop (see for example Sejnowski, 197 7a, b). What is required is thus a

complementary statement to Hebb's principle giving conditions for synaptic
5

decrease.

Such statements usually have resulted in a form of synaptic competition.

Consider, for example, one that was proposed by Stent (1973): "when the

presynaptic axon of cell A repeatedly and persistently fails to excite the

postsynaptic cell B while cell B is firing under the influence of other pre-

synaptic axons, metabolic changes take place in one or both cells such that

A's efficiency, as one of the cells firing B, is decreased". According to

Stent's principle, the increase of the strength of certain synapses onto

neuron B is accompanied by simultaneous decrease of the strength of other

synapses onto the same neuron B. There thus occurs a spatial competition

between convergent afferents. A competition mechanism of this kind provides

a qualitative explanation of some experimental results on cortical develop-

ment (e.g. monocularly deprived animals (Stent, 1973)) as well as some

aspects of certain more complex deprivation paradigms such as those recently

reported by Rauschecker and Singer (1981).

'

'I q ::U - .' " ... . .. .. ....
.. .-4 ' ' ' '.. ' "' ' . .. ." ' ... L
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In the present work, we present a mechanism of synaptic modification

that results in a temporal competition between input patterns rather

than a spatial competition between different synapses. With this

mechanism, whether synaptic strength increases or decreases depends upon

the magnitude of the postsynaptic response as compared with a variable

modification threshold. We show that this can account quantitatively in

a more powerful way for increases and decreases in selectivity, as well

as a great variety of other experimental results in diverse rearing

conditions.

We propose that the change of the j-th synapse's strength at that time t obeys

the following rule:

(t) -(c(t))J(t) - em (t) (4)

where *(f) is a scalar function of the pottsynaptic activity, c(t), that

changes sign at a value, eM, of the output called the modification threshold:

O(c)<O for c <eM, (c)>O for c>6

The term, -.m(t), produces a uniform decay of all junctions; this in most

cases does not affect the behavior of the system if c is small enough. How-

ever, as will be seen later, it is important in some situations. Other than

this uniform decay, the vector k is driven in the direction of the input

if the output is large (above 8M) or opposite to the direction of the input

if the output is small (below e As in hebbian modification, when d >0 and

is large enough m, increases. However, when d >0 and c is not large enough,

m decreases. We may regard this as a form of temporal competition between

incoming patterns.

The idea of such a modification scheme was Irtroduced in Cooper et al. (1979).

Their use of a constant threshold 0M  however, reqii,:ed n a certain lack of

•.-.- '- -I -". .. , ,
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robustness of the system: the response to all patterns could slip

below 0M and then decrease to zero. In the absence of lateral inhibition

between neurons, the response might increase to more than one pattern leading

to stable states with maximal response to more than one pattern.

In this paper, we will see that making an appropriate choice for %(t) allows

correct functioning under quite general conditions and provides remarkable

noise-tolerance properties.

In our threshold modification scheme, the change of the J-th synapse's strength

is written as a product of two terms, the presynaptic activity (t), and a

function, *(k(t), j(t)) of the postsynaptic variables, the output, k(t)

and the average output j(t). Making use of ;(t) in the evolutive power of the

neuron is a new and essential feature of this work. It is necessary in order

to allow both boundedness of the state and efficient threshold modification.

Neglecting the uniform decay term, for the moment, (c-a), in vector notation

we have

(t)- * (t, ()) (t)(5)

This, together with eq. 2, yields:

- • • a)(6)

The crucial point in the choice of the function $(c,c) is the determination

of the threshold 0 M(t), i.e., the value of c at which *(c,c) changes sign. A

Mcandidate for OM(t) is the average value of the postsynaptic firing

rate, (t). The time average is meant to be taken over a period

3L
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T preceding t much longer than the membrane time-constant T so

that c(t) evolves on a much slower time-scale than c(t). This canI 6
usually be approximated by averaging over the distribution of inputs

for a given state m(t)

4
c(t) =m(t)-d

This results in an essential feature, the instability of low selectivity

points, as will now be informally shown.

As a simplification, assume that takes on K discrete values dI, ...I dK wth

equal probability and let m be a low-selectivity equilibrium point.

Equilibrium means that the average E[4(m• -)d] (I/K)E K(m • d i)di is

the null vector, while low-selectivity means that for most of the d s,
• .4

say all of them, the output m° di is positive, and mo. d mo dJ for

all i and J. It follows that for all I,
I I

m. di = E[mo d" t OM(mo) hence O(m d )t 0.

Consider now a small perturbation from equilibrium: m = m + x. It is~0

likely that x will "favor" some of the di' s to the detriment of others:

a favored input is a d roughly pointing in the direction of x, which there-

fore satisfies m • di> OM(m), hence O(m * d )>0, while for the difs directed

opposite to x one has O(m • di )co. Thus, when a favored input d comes in,

the state m moves in its direction (eq. 6 with O(c)>O), while when a
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non-favored input comes in, it moves in the opposite direction. In sunmry,

iwhatever the input d , the state moves in the direction of the initial

perturbation x, away from mo, which is therefore an unstable equilibrium

point.

* We may now state that if stable equilibrium points exist in the state space,

they are of high selectivity. However do such points exist at all? The

answer is generally yes provided that the state is bounded from the origin and

from infinity. These conditions, instability of low-selectivity equilibria

as well as boundedness, are fulfilled by a single function *(c, c) if we

define 0M(t) to behave as a nonlinear function of c(t), for example

a power. The exponent should then be larger than 1. The final requirement

on O(c,_) thus reads:

sign O(c,) sign (c- ()p c forc>O
0

(7)

0 (0c- 0 for all c

where co and p are two fixed positive constants.
7 The threshold

I0

OM(C) = ( /c )Pc thus serves two purposes: allowing thresholdw0

modification when c c0 as well as driving the state from regions such

that c << c0 or c >> co. Equation (7) is illustrated in Fig. 2. The

process of synaptic growth, starting near 0 to eventually end in a stable

selective state, may be described as follows. Initially, << c0 hence

,1
i

-.° ,~ ~ . . .
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*(c, ) > 0 for all inputs in the environment: the responsesto all inputs

grow. With this growth c increases, thus increasing 0M. Now some inputs

result in postsynaptic responses that exceed OM, while others--those whose

direction is far away (close to orthogonal) from the favored inputs-give

- a response less than OM . The response to the former continues to grow while

the response to the latter decays. This results in a form of competition

between incoming patterns rather than competition between synapses. The

response to unfavored patterns decays until it reaches 0, where it stabilizes,

for *(0,c) = 0 for any c (equation 7). The response to favored patterns grows

until the mean response _ is high enough, and the state stabilizes. This occurs

in spite of the fact that many complicated geometrical relationships may exist

between different patterns, i.e. that they are not orthogonal since different

patterns may and certainly do share common synapses.

It should be stressed that this is only one solution among many possible others.

The purpose of these equations is to provide a scheme (rather than a unique

differential equation) that is biologically feasible, yet defined well enough

for mathematical and numerical analysis. Considerable freedom is left in the

exact choice of the function * since p and c0 may be almost arbitrarily chosen
and, once this is done, the only requirements are on the sign of *.

'-7
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IV. MATHEMATICAL RESULTS

The behavior of system (6) depends critically on the environment, that is,

on the distribution of the stationary stochastic process . Two classes

of distributions may be considered:

- discrete distributions: K possible inputs d1  ... dK

These will generally be assumed to occur with the same probability 1/K.

The process is then a jump process which randomly assumes new values at

each time increment. The vector T is (roughly) a Markov process.

- continuous distributions: in the present work, the only

continuous distribution that will be considered is a uniform distribution

over a closed 1-parameter curve in the input space R (section V).

Although the principles underlying the convergence to selective states are

intuitively fairly simple (see preceding section), mathematical analysis of

the system is not entirely straightforward, even for the simplest . Mathe-

matical results, obtained only for certain discrete distributions, are of two

types: 1) equilibrium points are locally stable if and only if they are of

highest available selectivity with respect to the given distribution of

. 2) given any initial value of m in the state space, the probability that (t)

converges to one of the maximum selectivity fixed points as t goes to infinity

is 1. Results of the second type are much stronger, and require a tedious

geometrical analysis. Results are stated here in a somewhat simplified form
p4

(obvious requirements of a very mathematical character are omitted). For exact

statements and proofs, the reader is referred to Bienenstock (1980).

We first study the simple case where takes on values of only two possible

4i
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1 2
input vectors d and d , that occur with the same probability:

P[ - d] - P[ - d2] = 1/2.

Whatever the real dimension N of the system it reduces to two dimensions.

(ny component of T outside the linear subspace spanned by d and d2 will

eventually decay to 0 due to the uniform decay term.)

It follows immediately from the definition that the maximum value of Sel (m)

in the state space is 1/2. It is reached for states m which give null response

when dI comes in (i.e. are orthogonal to d I) but positive response for d -- or

vice versa. Minimum selectivity, namely 0, is obtained for states m such that

m • dI  m -•1 . Equilibrium states of both kinds indeed exist:

Lemma 1: Let d and d2 be linearly independent and satisfy P[ - d I I

P[ - d2] 1/2. Then for any 0 satisfying eq. (7), eq. (6) admits exactly 4

fixed points, m0  1 m2 and m1,2 with: Sel (m0) Sel (m1'2) 0, and Sel (mi1 )

2 ) i w
Sel (m2  1/2. (Here the superscripts indicate which of the d are not orthogonal

.1 1 2

to m. (m0 is the origin). Thus for instance mI 1 d > 0, m * d2 - 0.)

The behavior of eq. 6 depends on the geometry of the inputs, in the present

1 2case on cos(d ,d ). The crucial assumption that is needed here is that

1 2cos(d ,d ),0. This Is a reasonable assumption which is obviously satisfied If

all components of the inputs are positive, as is assumed in some models (Von der

Malsburg, 1973; Perez et al., 1975). We may then state the following:

Theorem 1. Assume that in addition to the conditions of Lemma 1, cos(d , d 2) m 0.
0 1.2 1 2

Then m and m are unstable, m and m are stable, and whatever its initial

v'I value, the state of the system converges almost surely (i.e., with probability 1)
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either to m or to m

Theorem 1 is the basic result in the 2-dimensional setting: it characterizes

evolution schemes based on competition between patterns, saying that the state

eventually reaches maximal selectivity even when the two input vectors are

-very close to one another. Obviously this requires that some of the synaptic

strengths be negative since the neuron has linear integrative power. Inhibitory

connections are thus necessary to obtain selectivity (see also section V below).

Some selectivity is also realizable with no inhibitory connections-not even

"intracortical" ones--if the integrative power is appropriately nonlinear.

However, whatever the nonlinearity of the integrative power, theorem 1 could

not hold for evolution equations based on comeptition between converging

afferents (see Appendix B).

In theorem 1, we have a discrete sensory environment which consists of

exactly two different stimuli--a situation, although simple mathematically,

not often encountered in nature. It may however, very well correspond to

a visual environment restricted to only horizontally and vertically oriented

contours, present with equal probability. Theorem 1 then predicts that

cortical cells will develop a selective response to one of the two orientations,

with no preference for either (other than what may result from initial

connectivity). Thus, on a large sample of cortical cells, one should expect

as many cells tuned to the horizontal orientation as to the vertical one. (So

far, no assumption is made on intracortical circuitry. See Appendix D).

The proof of theorem 1 is based on the existence of trap regions around each of

of the selective fixed points:
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Theorem 2: Under the same conditions as in Theorem 1, there exists

12 12 12around m (m ) a region F (F ) such that once the state enters F (F2),

1 2it converges almost surely to m (m2).

The meaning of theorem 2 is the following: once m(t) has reached a certain

selectivity; it cannot "switch" to another selective region. Applied to cortical

cells in a patterned visual environment, this means that once they become

sufficiently committed to certain orientations, they will remain committed to

those orientations, (provided that the visual environment does not change), r

becoming more selective as they stabilize to some maximal selectivity'. Theorems 1

and 2 are illustrated in Figure 3.

It is worth mentioning that when cos(d , d 2)<0, the situation is much more

complicated: trap regions don't necessarily exist and periodic asymptotic

behavior, i.e., limit cycles, may occur, bifurcating from the stable fixed

1 2points when cos(d ,d ) becomes too negative (see Bienenstock, 1980).

We now turn to the case where takes on K values. The following is easily

obtained:

Lemma 2: let d, d2  d be linearly independent and satisfy

P[ - d 1  P dk ] = I/K. Then, for any 0 satisfying equation (7),

eq. (6) admits exactly 2K fixed points with selectivities 0, 1/K, 2/K,

(K-l)/K. There are K fixed points m , .. , m of selectivity (K-I)/K.

Obviously, (K-l)/K is also the maximum possible selectivity with respect

to . It means a positive response for one and only one of the inputs. The

IV
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situation is now much more complicated that what is was with only

2 inputs: it is not obvious whether in all cases assuming that all the

cosines between inputs are positive is sufficient to yield stability of the

maximum selectivity fixed points. However, we may state the following:

Theorem 3: Assume, in addition to the conditions of Lemma 2, that d 1 .. d

are all mutually orthogonal or close to orthogonal. Then the K fixed points

of maximum selectivity are stable, and, whatever its initial value, the state

of the system converges almost surely to one of them.

The proof of theorem 3 also involves trap regions areound the K maximally

selective fixed points, and the analog of theorem 2 is true here.

Although the general case has not yet been solved analytically, as will be

seen in the next section, computer simulations suggest that for a fairly broad

range of environments if d * di >0, even if d 1 .. d Kare far from being

mutually orthogonal, the K fixed points of maximum selectivity are stable.

Simulations suggest further (see for instance Fig. 4b) that even if the

dl ... ' d rare not linearly independent and are very far from being mutually

orthogonal, the asymptotic selectivity is close to its maximum value with

respect to
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V. ORIENTATION SELECTIVITY AND BINOCULAR INTERACTION IN VISUAL CORTEX

We now apply what has been done above to a concrete example, orientation

selectivity and binocular interaction in primary visual cortex. The

ordinary development of these properties in mammals depends to a large

extent on normal functioning of the visual system (i.e. normal visual

experience) during the first few weeks or months of post-natal life. This

has been demonstrated many times by various experiments, based mainly on the

paradigm of rearing the animal in a restricted sensory environment. In the

next two sections, it is shown how equations (4)-(7) account for both normal

development as well as development in restricted visual environments.

Consider first a classical test-environment used to construct the tuning

curve of cortical neurons. This environment consists of an elongated light

bar successively presented or moved in all orientations - preferably in a

random sequence -- in the neuron's receptive field. Thus all the parameters

of the stimulus are constant except one, the orientation, which is uniformly

distributed on a circularly symmetric closed path. We assume that the

retino-cortical pathways maps this family of stimuli to the cortical neuron's

space of inputs in such a way as to preserve the circular symmetry (as defined

below). Thus, the typical theoretical environment that will be used for

constructing the formal neuron's tuning curve is a random variable uniformly

distributed on a circularly symmetric closed one-parameter family of points

in the space R N . The parameter coding orientation in the receptive field

is, in principle, continuous. However, for the purpose of numerical simulations,

1Kthe distribution is made discrete. Thus 4 takes on values on the points d , ... ,d

The requirement of circular symmetry is expressed mathematically as follows:

*1
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the matrix of inner products of the vectors dI , ... dK is circular

(i.e., each row is obtained from its nearest upper neighbor by shifting

it one column to the right) and the rows of the matrix are unimodal. A

random variable, ,uniformly distributed on such a set of points will be,

hereafter, called a circular environment. Such a d may be roughly charac-

terized by 3 parameters: N, K and a measure of the mutual geometrical

closeness of the d's, for instance min cos(dd).

We are now faced with the difficult problem of specifying the stationary

stochastic process that represents the time-sequence of inputs to the

neuron during development. In a first analysis, there is no choice but

oversimplifying the problem by giving the stochastic process exactly the

same distribution as the circular d defined above. In doing so, we assume

that development of orientation selectivity is to a large extent independent

of other parameters of the stimulus, e.g., contrast, shape, position in the

receptive field, retinal disparity for binocular neurons, etc. The elementary

stimulus for a cortical neuron is a rectilinear contrast edge or bar. Any

additional pattern present at the same time in the receptive field is regarded

as random noise. (A discussion of this point is given in Cooper et al. (1979)).

Va. NORMAL MONOCULAR INPUT

The behavior of a monocular system in circular environments is investigated

by n' erically simulating equation 6 with a variety of circular 4's and'functions

satisfying equation 7. In the simulations presented here, the dimensions of

the input and state space is generally N = 37; the number K of input vectors

varies from 12 to 60. (Various kinds of functions * were used: some were

- - -.- "- .. .. . , -- - -r 7 - . .. . . ..
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stepwise constant, others smooth, bounded or unbounded.) One may

reasonably expect the system's behavior to be fairly independent of N and

K if these are high enough. However, the geometry of d may be determining:

if the d is are closely packed together in the state space, i.e., if min

cos(d ,d i) is close to 1, convergence to selective states may presumably

be difficult to achieve or even impossible.

Simulations show the following behavior:

1. The state converges rapidly to a fixed point, or

attractor.

2. Various such attractors exist. For a given and 0

they all have the same selectivity, which is close

to its maximum value in

3. The asymptotic tuning curve is always unimodal. One

may thus talk of the preferred orientation of an

attractor.

4. There exists an attractor in each possible orientation.

5. If there is no initial preference, all orientations have

equal probability of attracting the state. (Which one

will become favored depends on the exact sequence of

inputs). This does not hold for environments which are

I not perfectly circular, at least for a single neuron system

4 as the one studied here.

Figs. 4a and 4b show respectively the progressive buildup of selectivity and

the tuning curve when the state has virtually stabilized.
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In summary then, the system behaves in circular environments exactly

as we might have expected from the results of the preceding section. One

should however note one important difference: the maximum selectivity for

a continuous environment cannot be as simply calculated as it was before.

It is only when d is uniformly distributed on K linearly independent vectors

that we know that max Sel (in) (Lemma 2). Theorem 3 tells us that if
q K

in addition the vectors are nearly orthogonal to one another, this selectivity

is indeed asymptotically reached. We could not prove that this is also true

when the vectors are circularly arranged but not mutually orthogonal. How-

ever, it could not disproved by any numerical simulation, so we. con!jecture

that is indeed true. (Reasonable selectivity is attained even in most

unfavorable environments. As an example, in a circular such that all

cosines fall between .94 and 1, a selectivity of .68 was reached

after 12,000 iterations.) Notice that in the present context this

question is only of theoretical interest, since naturally occuring environ-

ments are continuous rather than discrete. The behavior of our system in

such an environment is very well approximated by a discrete circular d,

provided that K is large enough. K is then presumably larger than N, the

K inputs are linearly dependent and we have no explicit formula for max Sel Cm).

The system thus functions well in a large class of environments. It should

be stressed that the numerical value of the only parameter that appears
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explicitly in the evolution scheme itself, namely the exponent p, is

not at all critical. Simulations performed with a constant , p being

varied from .01 to 10, yield the same asymptotic limit for the selectivity;

the height of the asymptotic tuning curve, i.e., max(m.d), is however

highly dependent on p. This invariance property validates in a sense

the definition of Sel d(x).

Inhibitory synapses are essential here exaccly as they are in the 2-dimensional

case. One way to show this is to substitute 0 for all negative components in

the state once it has reached selectivity. This typically results in a

drastic drop of selectivity (e.g. from .81 to .55) although a slight

preference generally remains for the same orientation as before. This may

be related to the experimental fact that local pharmacological deactivation

of inhibitory connections strongly impairs orientation selectivity by

rendering all orientations effective in triggering the cell's response

(Sillito, 1975).

Finally, it should be mentioned that the system displays a good noise-

tolerance, particularly when the state has already reached a selective region.

The system then resists presynaptic additive noise with a signal-to-noise

ratio of the order of 1, and postsynaptic noise with a signal-to-noise ratio

as small as 1/4.

Vb. RESTRICTED MONOCULAR INPUT

To discuss this situation we must now include the exponential decay term,

-CT(t), previously neglected (Eq. 4). It is clear that the results stated

above will be preserved if c is sufficiently smaller than the average of



25.

-(c, )j (i.e., competition mechanisms are faster than decay). However,

exponential decay may become crucial if one asks what is the response of

the cell to patterns that were not represented in the environment during

development.

Consider for instance an environment consisting of a single stimulus d

It is then easily shown that system 6-7 admits one attractor mI that

satisfies ml. dI =c for small c (m . dI  c for c = 0). Obviously,
I0

for C > 0, m will satisfy m d = 0 for any d orthogonal to dI . How-

ever the response to a pattern d not orthogonal to d will depend both on

C and on cos(d,d ). One may for instance find that m . d z 1/2 (mI1 . d ) for

cos(d,d ) - .5. If one computes now the selectivity of the neuron in state

mI with respect to a circular environment (d , ..., dK) such that min

cos(d I, di) = .5, one will obviously get a low value, in fact Sel (m )< .5.

The one-stimulus environment may be regarded as a case corresponding to

rearing the animal in a visual world where only one orientation is present.

No controversy remains at present that rearing in such a visual environment

results in a cortex in which all visually responsive cells are tuned to the

experienced (or nearby) orientations (Blakemore and Cooper, 1970; Hirsch and

Spinelli, 1970; 1971; see also Stryker et al., 1978). We see that our theory

is in agreement with these findings; moreover we predict that in such a cortex

.4j the average selectivity of these cells should be lower than normal. Although

there is so far no detailed quantitative study on this point in a recent work

there is some indication that this may indeed be true: "more neurons with

normal orientation tuning were found in the kittens that could see all

orientations,or at least horizontal and vertical, than in the kittens that

had experienced only one orientation" (Rauschecker and Singer, 1980).

- v. _7
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Vc. BINOCULAR INPUT

We now consider a binocularly driven cell. The firing rate of the

neuron at time t becomes

C(t) = mr -'r tW + £t)-W) (8)

with evolution schemes for "right" and "left" states m and m straightforward,,r IVE

generalizations of eq. (4). Various p.ssibilities now exist for the input

(drd ): one may wish to simulate normal rearing (both r and circular

and presumably highly correlated), monocular deprivation, binocular de-

privation etc...

Detailed discussion of the results of simulations under various conditions

is given in the next section. The main results are summarized here:

1. In a normal binocular environment, the cell becomes

orientation selective, binocular, preferring the

same orientation through both eyes.

2. In an environment simulating monocular deprivation,

the cell becomes monocular and orientation-selective,

whatever its initial state.

3. In environments simulating binocular deprivation, the

cell does not lose its responsiveness, but does lose

its orientation selectivity if it was present.

I!
*1 ,.. . ... ...
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VI. DEVELOPMENT UNDER DIFFERENT REARING CONDITIONS

a) Related experimental data

This brief summary is restricted to area 17 of kitten's cortex. Most

kittens first open their eyes at the end of the first week after birth.

It is not easy to assess whether or not orientation selective cells exist

at that time in striate cortex: few cells are visually responsive, and

the response's main characteristics are generally "sluggishness" and

fatigability. However, it is quite generally agreed that as soon as

cortical cells are reliably visually stimulated (e.g. at 2 weeks), some

are orientation selective, whatever the previous visual experience of the

animal (cf. Hubel and Wiesel, 1963; Blakemore and Van Sluyters, 1975;

Buisseret and Imbert, 1976; Fregnac and Imbert, 1978).

Orientation selectivity develops and extends to all visual cells in area

17 if the animal is reared, and behaves freely, in a normal visual

environment (NR): complete "specification" and normal binocularity (about

80% of responsive cells) are reached at about 6 weeks of age (Fz'rgnac

and Imbert, 1978). However, if the animal is reared in total darkness from

birth to the age of 6 weeks (DR), none or few orientation selective cells

are then recorded (from 0 to 15%, depending on the authors and the

classification criteria); however the distribution of ocular dominance

seems unaffected (Blakemore and Mitchell, 1973; Imbert and Buisseret, 1975;

Blakemore and Van Sluyters, 1975; Buisseret and Imbert, 1976; Leventhal and

Hirsch, 1980; Fregnac and Imbert, 1978). In animals whose eyelids have been

sutured at birth, and which are thus binocularly deprived of pattern vision

(BD), a somewhat higher proportion (from 12 to 50% of the visually excitable

cells are still orientation selective at 6 weeks (and even beyond 24 months of

age) and the proportion of binocular cells is less than normal (Wiesel and

-w -. .. . - . .. . ... .... ..
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Hubel, 1965; Blakemore and Van Sluyters, 1975; Kratz and Spear, 1976;

Leventhal and Hirsch, 1977, Watkins et al., 1978).

Of all visual deprivation paradigms, putting one eye in a competitive

advantage over the other has probably the most striking consequences:

monocular lid-suture (MD), if it is performed during a "critical" period

(ranging from about 3 weeks to about 12 weeks), results in a rapid loss

of binocularity, to the profit of the open eye (Wiesel and Hubel, 1963,

1965); then opening the closed eye and closing the experienced one may

result in a complete reversal of ocular dominance (Blakemore and Van

Sluyters, 1974). A disruption of binocularity that does not favor one of

the eyes may be obtained, for example, by provoking an artificial

strabismus (Hubel and Wiesel, 1965) or by an alternating monocular

occlusion, which gives both eyes an equal amount of visual stimulation

(Blakemore, 1976). In what follows, we call this uncorrelated rearing (UR).

b) Simulations

The aim of this section is to show that the experimental results briefly

reviewed above follow from our assumptions if one chooses the appropriate

distribution for Q" The model system now consists in a single binocular
neuron. The firing rate of the neuron at time t is given by

where the indices r and k refet to right and left eye respectively. Tr

(resp. T.) obeys the evolution scheme described by equations 4-6, where

r(resp. ,) is substituted for . The two equations are of course coupled,

since c(t) depends at each t on both Tr(t) and T,(t).

,M
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The vector (%, ) is a stationary stochastic process, whose distribution

is one of the following,depending on the experimental situation one wishes

to simulate:

Normal Rearing (NR):

r(t) = (t) for all t, and qr is circular. (Noise terms that may be

added to the inputs may or may not be stochastically independent).

Uncorrelated Rearing CUR):

and 4, are i.i.d. (independent identically distributed): they have

the same circular distribution, but no statistical relationship exists

between them.

Binocular Deprivation:

1. Total light deprivation (DR). The 2n components of

( r' ) are i.i.d.: d and d are uncorrelated noise terms.

2. Binocular pattern deprivation (BD). 4r(t) = r(t)e,

M (t) = (t)e where e is an arbitrary fixed vector with

positive components, and X and X are scalar posiJve-valued

i.i.d.

Monocular Deprivation (MD):

4r is circular, , is a noise term:

In the NR case, the inputs from the two eyes to a binocular cell are

probably well correlated. We therefore assume that they are equal, which

is mathematically equivalent. The DR distribution represents dark dis-

charge. The BD distribution deserves a more detailed explanation. In this

4: .... ...
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distribution it is only the lenlth ~rand of the vectors d and d.

that varies in time. This length is thought to correspond to the

intensity of light coming through each closed eyelid, whereas the

direction of the vector in the input space is determined by the constant

"funpatterned" vector e, e.g., e = 11 .,1). One may indeed assu~me

that when light falls on the retina through the closed lids, there is at

any instant of time high correlation between firing rates of all retinal

ganglion cells on a relatively large region of the retina. Inputs from the

two eyes, however, are probably to some extent asynchronous (cf. Kratz

and Spear, 1976); hence the BD distribution.

Simulations of the behavior of the system in these different environments

give the following:

NR (Fig. 5a): all asymptotic states are selective, binocular

with matching preferred orientations for stimulation through

each eye.

D~R (Fig. 5b,): the motion of the state (T r, mt ) resembles a

random walk. (The small exponential decay term is necessary

here too, in order to prevent large fluctuations). The

two tuning curves therefore undergo random fluctuations,

that are essentially determined by the second-order statistics

I of the input d. As can be seen from the figure, these

fluctuations may sometimes result in a weak orientation
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preference or unbalanced ocular dominance. However,

the system never stays in such states very long; its

average state on the long run is perfectly binocular and

non-oriented. Moreover, whatever the second-order sta-

tistics of and the circular environment in which tuning

curves are assessed, a regular unimodal orientation tuning

curve is rarely observed, and selectivity never exceeds .6.

We may thus conclude that orientation selectivity as

observed in the NR case (both experimental and theoretical)

cannot be obtained from purely random synaptic weights. It

is worth mentioning here that prolonged dark rearing has

been reported to increase response variability (Leventhal

and Hirsch, 1980); a similar observation was made by

1 9Fregnac and Bienenstock (1981)

BD (Fig. 5c): Unlike the DR case, the state converges

(as may easily be proved mathematically). Although there

exist both monocular and binocular stable equilibrium points,

the asymptotic state is generally monocular if the initial

state is taken as 0. The orientation tuning curve is then

J

4
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essentially determined by the relative geometry of the

fixed arbitrary vector e and the arbitrary circular environ-

ment which serves to assess the tuning curve. Fine unimodal

tuning is therefore not be be expected.

MD(Fig. 5d): The only stable equilibrium points are

monocular and selective. The system converges to such states

whatever the initial conditions. In particular, this accounts

for reverse suture experiments (Blakemore and Van Sluyters,

1974; Movshon, 1976).

UR(Fig. 5e): This situation is in a sense similar to the BD

one: the state converges, but monocular as well as binocular

equilibria exist. As in the BD case, the asymptotic state

generally observed with m r(0) = mz (0) = 0 is monocular. (This

should be attributed to the mismatched inputs from the two eyes,

as is done by most authors). In this case, however, asymptotic

states are selective, and when they are binocular, preferred

orientations through each eye don't necessarily coincide. It

should be mentioned here that Blakemore and Van Sluyters (1974)

report that after a period of alternating monocular occlusion,

the remaining binocular cells may differ in their preferred

orientations for stimulation through each eye.

a.
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These results are in agreement with classical experimental data in

the domain of visual cortex development. Further, it seems likely that

we can also explain other recent data obtained from more complicated

paradigms such as those reported in Rauschecker and Singer (1981).

Mostof the results presented in this section could be derived fairly

easily, with no need of further simulations, from our knowledge of the

convergence to selective states in the case of a monocularly driven neuron

in a circular environment (section Va). Some intriguing properties of

our theory, however, are more subtle. As an example, It Is shown in

Appendix C that in the MD case, the degree of monocularity of the

cortical cell is correlated with its orientation selectivity as well as

the diversity of inputs to the open eye. These unexpected predictions

agree well with the observation by Cynader and Mitchell (1980) and

Trotter et al. (in press) that after a brief period of monocular exposure,

oriented cells are more monocular than non-oriented ones as well as the

observation of Rauschecker and Singer (1981) that an open eye with restricted

inputs leads to cells oriented to the restricted input that are less

monocularly driven than usual.

VII. DISCUSSION

We propose a new mathematical form for synaptic modification and in-

vestigate its consequences on the development of selectivity in cortical

oi
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neurons. In addition we provide a definition of the notion of selectivity

with respect to a random variable that might be applied in many different

situations (in the domain of development of sensory systems, for example,

selectivity of binocular neurons to retinal disparity, etc.) In its

application to visual cortex our theory is in agreement with classical

experimental results obtained over the last generation and offers a

number of new predictions, some of which can be tested experimentally.

This may lead to the identification of the parameters of the theory and

provide indications as to the biochemical mechanisms underlying cortical

plasticity.

In a broader context, we may regard our form of synaptic modification as

a specific correlation modification of a hebbian type. The great majority

of models on a synaptic level in domains such as pattern recognition,
10

task learning or associative memory (which are less accessible to direct

neurophysiological experimentation) use schemes of a hebbian type with

some success. We are thus led to conjecture that some form of correla-

tion modification is a very general organizational principle that manifests

itself in visual cortex in a manner that is accessible to experiment.
4.

Although synaptic competition is a natural consequence of Hebb's principle,

its precise form must be defined. A distinction was made in Section III

71 between spatial competition--the form commonly accepted by theoreticians

as well as experimentalists--and temporal competition, the form utilized

in this work. The performance of these two is very different as we see

most clearly in the development of selectivity. In the temporal version
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asymptotic states are of maximum selectivity with respect to the

experienced environment d, independent of the geometry of . This was

rigorously proven analytically in some cases (Theorem 1; Section IV)

and conjectured on the basis of numerical results in other cases (circular

environments; Section V). En contrast with this, we claim that in any

model using spatial competition, correct behavior strongly depends on the

geometry of the environment: i.e., selective states are not reached if the

patterns in the environment are not sufficiently separated from one

another. Although this general statement is not proven here, a proof

is sketched in Appendix B for one particular model using spatial competition

between converging afferents. 11

We further note that selectivity, as was shown in Section V~b, does not

develop in a "pure noise" environment (the distribution termed DR). Some

kind of patterned input is required. 12 It follows that, even at the

first level of organization of connectivity, information is being

transferred from the environment to the system. This may shed some

5, light on what has been known for a long time as the innate/learned con-

troversy in visual cortex. Our results suggest that this dichotomy is,

at best, misleading. The system's potential developmental ability--its

evolutive power--may indeed be genetically determined; yet selectivity

has no meaning if it does not refer to a given structured environment

II
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that determines the final organization of the system.

The present work, however, makes no assumptions concerning the

initial state of cortex (e.g. the presence or absence of selectivity

at eye-opening). This question, still a subject of controversy (see

Pettigrew, 1978), must be settled experimentally. Further, although we

here assume that all synapses are equally modifiable, it could easily

be the case that there is variation in modifiability--even one that is

time dependent--and that for example some of the initial state information

is contained in a skeleton of synapses that is less modifiable.14

The principal results of our theory, applied to visual cortical neurons

and assuming that they are all equally modifiable according to

* equations 4-7 are now summarized. These results are either in agreement

with existing experimental data or are new and somewhat expected con-

sequences of our theory.

A. Monocularly driven neurons

1) A monocularly driven neuron in a 'normal' (pat-

terned) environment becomes selective. The precise pattern to which it

becomes selective is determined at random if the initial selectivity

is zero, or may be biased toward a particular pattern if there is a built-in

preference for this pattern.

2) This same neuron in various deprived environments

evolves as follows:

41
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a) Pure noise. The neuron becomes less selective

but continues to be (somewhat) responsive. It may show an orientation

preference, but this is relatively unstable.

b) Exposure to a single pattern (such as vertical

lines). The neuron comes L,, respond preferentially to the single pattern

but with less selectivity (less sharply tuned) than if all orientations

were present in the environment, This last is a natural consequence of

temporal competition between incoming patterns and can provide a good

test of our theory. 
15

3) Inhibitory synapses are required to produce

maximum selectivity. If such inhibitory connections are arbitrarily

set equal to zero, selectivity diminishes.

B. Binocularly Driven Neurons

1) A binocularly driven neuron in a 'normal'

(patterned) environment becomes selective and binocular. It is selctively

driven by the same pattern from both eyes.

9 2) This same binocularly driven neuron in various

deprived environments evolves as follows:

a) Uncorrelated patterned inputs to both eyes. The

neuron becomes selective, often monocularly driven; if binocular sometimes

t driven by different patterns from the two eyes.

I1
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b) Patterned input to one eye, noise to the other

(monocular deprivation). The neuron becomes selective and generally driven

only by the open eye. There is a correlation between selectivity and

binocularity. The more selective the neuron becomes, the more it is

driven only by the open eye. A non-selective neuron tends to remain

binocularly driven. This correlation is due in part to the fact that it

is the same mechanism of synaptic change that serves to increase both the

selectivity and ocular dominance of the open eye. However (as shown

in Appendix C) there is also a subtler connection: It is the non-preferred

inputs from the open eye accompanied by noise from the closed eye that drive

the neuron's response to the closed eye to zero. Thus, for example, if the

visual environment were such that there were mostly preferred inputs

to the open eye, even a selective cell would remain less monocular. (It

should prefer the open eye but remain somewhat driven by the closed )

As another example, a kitten dark-reared to the age of about 42 days (when

there remain few or no specific cells) and then given monocular exposure

to non-patterned input would retain more binocularly driven cells than a

similar animal given patterned input. 16

c) Noise input to both eyes (Dark Rearing or Bi-

nocular Deprivation). The neuron remains non-selective (or loses its

selectivity)and diminishes its responsiveness but remains binocularly driven

(in contrast to the situation in monocular deprivation).

I
a
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These theoretical conclusions are consistent with experimental data on

increases and decreases in selectivity, data concerning changes in ocular

dominance in various rearing conditions, as veil as data from more complicated

paradigms. Although there are indications in recent work that some of the

new predictions are in agreement with experiment, they provide the opportunity

f or tests of more subtle aspects of the theory.

In conclusion, we note that a precise application of our theory to certain

complicated experimental situations would probably require inclusion of

some anatomical details, interneuronal interactions, as well as a statement

of what information is innate and which synapses are modifiable. 1
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Appendix A: Biochemical Mechanism for Temporal Competition

It is probably premature to propose a detailed physiological mechanism

for a mathematical synaptic modification algorithm: too many possi-

bilities exist with no present experimental test to decide between them.

However, we propose the following as a possible example.

The dependence of our modification threshold upon the mean postsynaptic

activity--which regulates the individual neuron modification in an overall

manner--might be the result of a physiological mechanism within the frame-

work proposed by Changeux et al. (1973). Their basic hypothesis is that

receptor protein on the postsynaptic membrane exists in two states, one

labile, the other stable; selective stabilization of the receptor takes

place during development, in an activity-dependent fashion. The quantity

of labile receptor available for stabilization is determined by the neuron's

average activity, i.e., labile receptor is not synthesized anymore when the

neuron's activity is high for a relatively long period of time (c>>c ).

(Cf. Changeux and Danchin (1976): "The activity of the postsynaptic cell

is expected to regulate the synthesis of receptor".)

Our hypothesis that during the period when competition really takes place

(i.e., when c is of the order of c in eq. 7) the sign of the modification

is determined by the instantaneous activity, c, relative to its mean, c,

requires that a single message, the instantaneous activity, be fed back

from the site of integration of the incoming message to the individual

synaptic sites, on a rapid time-scale, i.e., much faster than the one
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involved in the overall regulation mechanism. This might be contrasted

with the assumption implicit in most spatial competition models, namely,

that a chemical substance is redistributed between all subsynaptic sites

(cf. the principle of conservation of total synaptic strength

(von der Malsburg, 1973)).

eI
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Appendix B: Von der Malsburg's model of development of orientation
selectivity

A model of development of orientation selectivity using an evolution

scheme of the spatial type may be found in von der Malsburg (1973). We

present here a brief analysis of this model in view of the definition

given in Section III. We first show that the type of competition implied

by this model is indeed formally, the spatial one. Next we investigate

the behavior of the system in the simple situation of Theorem 1 in Section IV,

i.e., for a two-pattern environment, the dimension of the system being N - 2:

We will show why the assumption that is made of nonlinearity of the integrative

power is a necessary one. Finally, we prove that the class of two-pattern

environments d in which the system behaves nicely, i.e., the state is

asymptotically selective with respect to d, is defined by a condition of the

type O<cos(d , d 2)<a, where d and d2 are two patterns in d, and a is a

constant strictly less than 1, which actually depends on the nonlinearity

of the integrative power, i.e., on its threshold 0.

For the purpose of our analysis, we consider a single "cortical" neuron,

whose integrative and evolutive power are--in our notation--the following:

CMt W01().(t)) ,(B1)

with
* u - O if u > 0

"0 ifu<0 (B2)

m (t+l) y(t+l)(m (t)+h c(t~d (t)) -,...,N (B3)
;".1
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With h a small positive constant and y(t+l) such that:

N N

E Tj(t+l) EjZl(t) = s (B4)
Jil J=l

The integrative power is thus nonlinear, with threshold 0. The normalizing

factor y(t+l) in the evolution equation (12), keeps the sum of synaptic

weights constant, equal to s. All variables are positive.

Our analysis will be carried out on this reduced version of von der Malsburg's

model: we simply ignore the fixed intracortical connections assumed there,

for these are clearly not sufficient to tune the system to a selective state

if individual neurons don't already display this property as is clearly

stated by the author himself, the ability to develop selectivity is an intrinsic

property of individual neurons, the intracortical connections being there to

organize orientation perference in a coherent way in cortex. (This also the

viewpoint in the present work: see Appendix D). Notice that this is by no

means a contradiction to the fact that in the final state, intracortical

connections, particularly the inhibitory ones, significantly contribute

-to the selectivity of each neuron.

A straightforward calculation shows that eqs. B3 and B4 are equivalent to

,* the following.

--' I ~~;J (t+l)-JT)i ((t) / (s (t)%(j (t)/A(t) ()) - M.(t) s) J 1 ,... ,N (B5)

1 14 ~s h k(t)4(t)/(s + h kt W

7- :1. . -
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N
where 4(t) E (t). (In the simulations, 4(t) is actually a constant.)

Thus, according to eq. B5, the sign of the change of Tj at time t does not

depend on the postsynaptic activity k(t) but on the J-th fiber activity,

d (t). This is clearly spatial competition, as was intuitively clear from

the conservation law (eq. B4).

We investigate now the behavior of system B5 in a two-pattern

1 2
environment: Pd [ = .5. For this purpose we slightly modify

the original setup: there the dimension is relatively high (N-19) but the

firing frequencies in the afferent fibres are discrete-valued, i.e., dj.0

or 1, J=l,...,N. Here, we take N=2 with d1,2 allowed to take any value

between 0 and 1. We thus still get a broad range of environments

1 2
(cos(d ,d ) may assume any value between 0 and 1), but the analysis is

made considerably easier. To further simplify, we characterize d by a

single parameter 0<6<1 by writing dl=(l,6), d 2=(6,1). Thus cos(d ,d ) 

26/(1+6 2). We also set s 1.

Under these circumstances, averaging the evolution equation B5 with

respect to d leads to the following:

E[m (t+l) - m (t)] = h(2m (t)-l) (0(I+6)-26), J-l,2. (B6)
"'Jj

To obtain eq. B6, it has been assumed that both inputs yield above-threshold

responses, i.e., m-d and md 2>0. Higher order terms in h have been ignored.

4

- 12
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We see that the behavior of the system is determined by the sign of

the quantity 0(l+6)-26. Notice that, since s=l, e cannot be arbitrarily

high: in order that states m exist such that md 1 and m.d2 >0, one has to

assume that 0<(1+6)/2.

It follows from eq. B6 that for 6 such that 0(l+6)-26<0, there is one

attractor of selectivity 0, namely (.5; .5). When 6 gets smaller and

0(i+6)-26 becomes positive, the solution bifurcates into two attractors

of maximum selectivity. We thus conclude that:

1. If the neuron's integrative power is linear, i.e., 0-0, the

asymptotic state is nonselective. (When 0=0 and d and d2 are orthogonal,

(i.e.,6=0) the first-order term in h vanishes, yet the second-order term

also leads to the nonselective fixed point.)

2. Given a fixed 0<0<1, the environments that are acceptable to

the system are those which satisfy 6<0/(2-0), which is equivalent to a

condition of the type cos(d ,d 2)<a, with a strictly less than 1. (Notice

that in the actual simulations, d consists of 9 stimuli that are indeed

well separated from one another, since min cos(d,di) = 1/7.)

I
4

I;
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Appendix C: Correlation Between Ocular Dominance and Selectivity in the
Monocular Deprived Environment.

Consider the MD environment in Section VIb: it is defined by ( , ) where

is circular and n is a "pure noise" vector. We will prove that the
* .

state (mr, 0) is stable in this environment provided that m is a stable

selective state in the environment

Let ( r' ) be a small perturbation from equilibrium. The motion at

point (m + cr' ) is given by:

(M* d - r.*r )

M (m "d + d + x m +x -dr-d
rr r rr r r (CIL)

where we assume that the noise has zero mean.

We analyze separately--somewhat informally--the behavior of the two

equations. The stability of eq. Cr is immediate from the stability of

the selective state m in the circular enviornment r To analyze C1t,r r
we divide the range of the right eye input d into three,,\r

classes:

(i) d is such that m " d is either far above threshold, .,r r vr

and therefore 0(mr  d r9 m dr d r)>O or far below threshold, 9M,I* *-
(but still positive) and therefore (m mrdr)<O;

(ii) ris such that mr • d is near threshold, G, and

therefore (m dr,m r.d r)=O

7
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!*

(iii) is such that mr*dr -O and again* *
€(m r" .r , m r "r ) =0 "

For the first class of inputs, the sign of * is determined by d

alone, hence Cl is the equation of a random walk. To investigate the

behavior of Cl in the two other cases, we neglect the term rand

linearize around the relevant one of its two zeros. It is easy to

see that case (ii) yields

n i( (C2)

whereas in case (iii) one obtains

2(I3)

where E1 and E2 are positive constants, measuring respectively the absolute

value of the slope of 0 at the modification threshold and at 0.

Since n is a noise-like term, its distribution is presumably symmetric

with respect to x and averaging eqs. (C2) and (3) yields respectively

1 2 i n  (c4)
, en (C

C n 2(C5)
N 2

2where n is the average squared magnitude of the noise input to the synapses

from the closed eye and N is the dimensionality of the system.

We thus see that input vectors from the first class move x randomly, inputs

from the second class drive it away from 0, whereas inputs from the third

-t" " "7 .. .. ; '''- --- ' m T 
-
. . ..
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drive it toward 0. The random contribution occurs only before the synaptic

lb strengths from the open eye have settled to one of their fixed points.

Once these strengths have reached a fixed point, only (ii) and (iii) occur.

In the case where the range of ris a set of K linearly independent

vectors and m r is of maximum selectivity, (K-l)/K, case (i) does not occur

at all. Case (ii) occurs only for one input, say drI with m -d Iexactly
r ~rr

equal to threshold, 0M' and (iii) occurs for the other K-1 vectors which

are all orthogonal to m r.The more selective m rwith respect to d r9 the

higher the proportion of inputs belonging to class (iii), the class that

yields eq. C5, i.e., that brings x back to 0.

The stability of the global system still depends on the ratio of the

quatiiesE an E2 as well as on the statistics of the noise term u

(e.g. its mean square norm). We may however formulate two general con-

clusions. First, under reasonable assumptions (c of the order of e
1 2

and the mean sqt'are norm of u of the Same order as that of i

is stable on the average for a selective mr Seod th.eiul lcuto

of ,around 0, essentially due to inputs d in classes Mi and (ii), is
7 ,r

smaller for highly selective m *Is than it is for mildly selective ones.r

Thus, one should expect that in a monocularly deprived environment non-

selective neurons tend to remain binocularly driven. In addition since it

~1 is the non-preferred inputs from the open eye accompanied by noise from the

closed eye (case three) that drive the response to the closed eye to zero,

if inputs to the open eye were restricted to preferred inputs (case two) even

a selective cell would remain less monocular.

-h
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Appendix D: Many Neuron Systems

It is very likely that interactions between cortical neurons play an

important role in overall cortical function as well, perhaps, as in

selectivity of individual cortical cells (Creutzfeldt et al., 1974 and

Sillito, 1975). Although in this paper we have treated the development

of selectivity of cortical neurons with inputs only from geniculate

neurons, the input space can be generalized to include inputs from other

cortical neurons as well. Thus the ideas and methods employed here are

equally applicable to the many-neuron system. Most important, the result

that stable equilibria in a stationary environment are selective with

respect to their environment can be taken over to the many-neuron system.

Consider such a system in a stationary external environment. The state

of each cortical neuron now has two parts: one relative to the geniculo-

cortical synapses, the other to the cortico-cortical ones. The environ-

ment of the neuron is no longer stationary, for the states of all other

cortical neurons in the system evolve. Yet, when the system reaches

. global equilibrium, which will occur under reasonable assumptions, each

individual environment becomes stationary. The single unit study then

allows us to state that, at least in principle, (we don't know a priori

that each environment is circular) the state of each neuron is selective

with respect to its own individual environment.

In practice, formulation of the many-neuron problem poses two questions.

First, the integrative power of the system should be specified. Since

SAA

~5L~ -.
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the system includes cortico-cortical loops, it is not obvious what the

response to a given afferent message should be. The two major alternatives

are: a. Stationary cortical activity is rapidly reached, (i.e., before

the afferent message changes); b. Relevant cortical activity is transitory.

The second question concerns the evolution of cortico-cortical synaptic

strengths: shoulv these synapses be regarded as modifiable at all and

if yes, how? 'V-i der Malsburg (1973), assumes(a) above and proposes fixed

connectivity patterns, short-range excitatory, longer-range inhibitory.

We have performed a simulation of a many-neuron system using the much

simplier (and probably more natural) assumption (b) above: 1. Only

monosynaptically and disynaptically mediated components of the afferent

message are taken into account for the computation of each cortical neuron's

activity, before modification is performed and a new stimulus is presented.

2. Intracortical connections are fixed, and spatially organized as in

von der Malsburg (1973). 3. The state of each neuron evolves according

to eqs-.6 and 7 of the present work. The results are the following:

1. The system's state converges. 2. At equilibrium, each neuron stands

in a selective state with respect to the environment. 3. Preferred

orientation--when the environment is a circular one--is a piecewise

continuous function of cortical distance. Point 3 is illustrated in Fig. 6.

M L-' - -- ... .. - V-- - -, . .... . .. .---. .. .



FOOTNOTES

3. The precise form of the averaging integral, i.e. of the

convolution kernel, is not essential. Exponential kernels

K(t) = exp(-t/T) are often used in this context (see e. g.

Nass and Cooper, 1975; Uttley, 1976).

4. The mathematical concept that is needed in order to represent

the environment,d,during the development period is that of a

stationary stochastic process,d (t), that is (roughly), a time-

dependent random variable whose distribution is invariant in time.

For example, d, could represent an elongated bar In the receptive

field of the neuron, rotating in some random manner around its

center. At each instant, the probability of finding the bar in

any given orientation is the same as at any other: the distribution of

d(t) is time-invariant, uniform over the interval (0, 1800).

5. Nonspecific conditions for synaptic decrease such as uniform

exponential decay is clearly insufficient too: in Nass and Cooper

(1975) for instance, no selectivity is achieved without lateral

intracortical inhibition. OGier models (von der Malsburg, 1973;

Perez et al., 1975) use a normalization rule in conjunction with

a hebbian scheme for synaptic increase, which actually results in

decrease as well as increase. This normalization rule is discussed

in Appendix B.

6. Replacing the time average by an average over the distribution of

is allowed provided that 1) the process d(t) is stationary, 2) the
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interval,T,of time integration is short with respect to the

process of synaptic evolution (i.e., T(t) changes very little

during an interval of length T), 3) T is long compared to the mixing

rate of the process , (i.e. during a period of length T, the rela-

tive time spent by the process (t) at any point d in the input

space is nearly proportional to the weight of the distribution

of d at d). Now, synaptic evolution is probably a slow process,

requiring minutes or hours (if not days) to be significant, whereas

elementary sensory patterns (e.g. oriented stimuli in the receptive

field of a given cortical neuron) are normally all experienced in

an interval of the order of, say, 1 min. or less. We are thus able

to choose T so that a good estimate of c(t) be available to the neuron.

7. The sign of €(c,c) for c<O is not crucial since c is essentially a

positive quantity: cortical cells in general have low spontaneous

activity and at any rate are rarely inhibited much below their

spontrneous activity level. For the sake of mathematical complete-

ness, one may however wish to define p(c, ) for negative c; (c,_c)>O

is then the most convenient for it allows to state theorems 1-3 below

under the most general initial conditions.

8. The circular environment which serves to assess the orientation tuning

curves is now in a sense arbitrary, since it is not at all used in the

0 development period. The same remark applies of course to the BD case.

9. In fig. lB of Fregnac and Bienenstock (1981), which shows averaged

orientation tuning curves of a cell recorded in an 86 day old DR cat,aI
the selectivity is .58 at the beginning of the recording session, and

.28 at the end.

f , - ,-U



10. Notice, for instance, the analogy between states of maximum selectivity

as defined here and the optimal associative mappings of Kohonen (1977).

11. More complicated temporal or mixed spatio-temporal schemes are

possible and some such have been proposed. For example, Sejnowski

(1977a) has suggested a form of modification in which the change of

the j-th synaptic strength involves the covariance between the J-th

fiber and post-synaptic activities (Sejnowski, 1977a). In addition,

interaction between neurons (such as lateral inhibition) can in-

crease selectivity (see for example, Nass and Cooper (1975) and

Appendix D.)

12. Pure noise and circular environments may be regarded as two

extreme cases: the first totally lacks structure whereas the

second is highly organized. Intermediate cases, i.e., environments

consisting of the sum of a noise process and of a circular process

have also been investigated (see, for example, Bienenstock (1980)).

There it is shown that the asymptotic selectivity directly depends

on a parameter that measures the degree of structure of the environ-

ment.

13. We note, further, that the mechanism of synaptic modification we have

proposed leads both to what are sometimes called 'selective' and

'instructive' effects (depending on the structure of the environment

and the genetic initial state). Thus, as is already suggested by Rauschecker

and Singer (1981), this dichotomy is obscured, or does not appear at all, at

the synaptic level.



14. This skeleton might consist primarily of the contralateral

pathway and favor the development of orientation preference for

horizontally and vertically oriented stimuli. See, for example,

Fregnac (1979).

15. In addition the principle of temporal competition suggests an

experimental paradigm that could be used to increase the selectivity

of a cortical neuron while recording from the same neuron. The

paradigm consists of controlling the postsynaptic activity of the

neuron while presenting sequentially in its receptive field two

stimuli,A and B. Stimulus A(respectively B) should be associated with

a high (respectively low) instantaneous firing rate in such a way as

to keep the cell's mean firing rate at its original value. We predict

that the cell will enventually prefer Stimulus A (i.e. exhibit

selectivity with respect to the discrete environment consisting

of A and B). An experiment based on this paradigm is currently

being undertaken by one of the authors (EB) in collaboration with

Yves Fregnac at the College de France.

16. In this situation one might have to distinguish between short and

long monocular exposures. In very long monocular exposures the decay

term of eq. 4 (-cm(t)) could eventually produce decay of junctions

from the closed eye independent of the effect discussed above.
I

17. This last might be treated as for example in Cooper, Lieberman

and Oja (1979).
'I
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Figure Captions

Figure 1: Computing the selectivity with respect to an environment

uniformly distributed between wmin and wmax"

The abscissa displays a parameter of the stimulus, e.g. orientation

(Wmax - Wmin = 1800), the ordinate the neuron's response 0 is the

level of average spontaneous activity; M is the maximum response. The

selectivity of the neuron is then given by

Sel (J'a) 1ax fnwa  light area

= M ( - Wi i f(w) dw total box area

This is a simple measure of the breadth of the peak: curves of same

selectivity have approximately the same half-width at half-height. (Think

*for instance of triangularly shaped tuning curves.)

Typical values for orientation selectivity of adult cortical cells vary

between 0.7 and 0.85. ("specific" cells). Selectivity of broadly tuned

but still unimodal cells, e. g. those termed "immature" by Buisseret

and Imbert (1976) and Fregnac and Imbert (1978), lies between .5 and .7.

Obviously, 0 is the selectivity of an absolutely flat curve, whereas 1

is the selectivity of a Dirac 6-function.

.Figure 2: A function satisfying condition (7).

The 3 diagrams show the behavior of 0(c,c) as a function of c for three different,I
constant values of c. In each diagram, the solid part of the curve repre-

-.- ~r-IL A. --L_ - . . . ---- 9 . -. ---.--- '- .



sents *(c,Z) in the vicinity of c, which of course is the relevant

part of this function. In the upper diagram (c>>c 0 ), although *(c,c) is not

negative for all c as was formally required (see text), the probability

that *(c,c) > 0 is small and gets even smaller as c increases. The important

point in the definition of * is the nonlinearity of 8M(W)which makes it

increase or decrease faster than c, while M (c) is of the same order as
M

c, if c itself is of the same order as c0 .

Figure 3: The phasT portrait of Eq. 6 in an environment consisting of 2
inputs d and d (Theorems 1 and 2).

The diagram shows the trajectories of the state of the system, starting

from different initial points. This is a computer simulation performed

with one given function 0 satisfying condition 7. Using a different

function may slightly change the shape of the trajectories, without any

essential change in the behavior. The unstable fixed points are m
1 ,2

0 1 2
and m , the stable ones m and m . The system is a stochastic one, which

means that the trajectories depend in fact on the precise sequence of

inputs. As long as the state is in the unshaded region, it is not yet

1 2
known whether it will eventually be attracted to m or m . This be

*1 2
comes determined as the state enters one of the trap (shaded) regions, F or F

Trajectories shown here are deterministic ones, obtained by alternating

regularly between d and d . They are in fact the averaged trajectories

of the state and are much more regular and smooth than the actual

stochastic ones.

Figure 4: The evolution of a synaptic system in a circular environment.

qHere, K = 40, and the vectors are linearly dependent. The value of the

maximum selectivity with respect to d is therefore not precisely

#
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calculable. The asumptotic selectivity is approximately .9, perhaps

the maximum selectivity. (a) demonstrates the progressive buildup of

the selectivity in a circular environment d while (b) shows the resulting

tuning curve at t = 1000.

Figure 5: Results of computer simulations corresponding to various
rearing conditions.

In these simulations the upper and lower figures show cell responses to

stimuli from the two eyes.

a) Normal (NR). The cells response is binocular and selective.

b) Dark rearing (DR). No stable selectivity in the cell's response.

The response curve flucturates randomly. The cell is on the

average binocularly driven.

c) Binocular deprivation (BD). The cell reaches a final state

corresponding to the arbitrary vector corresponding to a diffuse

input to the retina. The cells are sometimes monocularly driven.

This is somewhat analogous to (e) below.

d) Monocular deprivation (MD). The cell's response is monocular and

selective.

e) Uncorrelated Rearing (UR). Both binocular and monocular selective

final states are observed.

.4W



Figure 6: A regular distribution of preferred orientation in a one-
dimensional cortex.

The system is an' array of 50 "cortical" cells arranged in a cyclic way

(cell no. 1 and cell no. 50 are neighbors) and interconnected according to a

fixed short-range-excitation-long-range-inhibition pattern. (Coefficients

of intcractions are, as a function of increasing inter-cell distance:

.4,.4,-.2,-.4,-.4,0, ...). The environment d of the system is the usual

circular one. Integrative and evolutive powers are described in the

text. When the system reaches equilibrium, one has .73<Sel (m1 )<.77 for

all i between 1 and 50. The diagram shows preferred orientation as a

function of cortical coordinate.
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